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In the framework of a two-band model, we study the phase-separation regime of different kinds of strongly
correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow
�wide� band simulates the more localized �more delocalized� type of charge carriers. By assuming that the
internal chemical pressure on the CuO2 layer due to interlayer mismatch controls the energy splitting between
the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping
higher than 1/8 in the experimental pressure-doping-Tc phase diagram of cuprates at large microstrain as it
appears in overoxygenated La2CuO4.
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I. INTRODUCTION

The mechanism driving the emergence of a quantum mac-
roscopic coherent phase that is able to resist to the decoher-
ence effects of high temperature remains a major topic of
research in condensed matter. The realization of this macro-
scopic quantum phase in doped cuprates close to the Mott
insulator regime has stimulated a large amount of investiga-
tions on the physics of strongly correlated metals. Most the-
oretical papers treated models of a homogeneous system
made of a single electronic band �or models of multiple hy-
bridized bands reduced to a single effective band� with a
large Hubbard repulsion.

There is growing agreement that the solution of the prob-
lem of high-Tc superconductivity requires the correct de-
scription of the normal state where spin, charge, orbital, and
lattice degrees of freedom compete and the functional phase
emerges in a complex system with two main components
showing mesoscopic phase separation. Here we consider a
theoretical model of the mesoscopic phase separation in a
two-band scenario of two strongly correlated electronic flu-
ids. This simple model grabs the key physics of the anoma-
lous normal phase in cuprates exhibiting the phase separation
as a function of charge density and the energy splitting be-
tween the two bands. This allows the understanding of the
different superconducting phases in different cuprate fami-
lies, i.e., the three-dimensional �3D� phase diagram where
the critical temperature depends on the doping and pressure.1

The motivation of this theoretical work is based on the re-
sults of recent experiments using angular resolved photo-
emission spectroscopy �ARPES� �Refs. 2–6� and scanning
tunneling spectroscopy �STM� �Refs. 7 and 8�, providing
compelling experimental evidence for the dual nature of
charge carriers and the nanoscale phase separation of the two
components in two different spatial domains in cuprate
high-Tc superconductors.9–11

A clear case for the phase separation of the two types of
charge carriers is overoxygenated La2CuO4+y, where the in-
terstitial oxygen ions are mobile above 180 K and stimulate
the phase separation of the two different kinds of dopant
holes.12–20 Currently, from the analysis of magnetic neutron
scattering experiments, there is an agreement for the frus-
trated mesoscopic phase separation at doping larger than 1/8
in Sr-doped La214, Y123, and Bi2212 between a first more
delocalized component that does not show spin fluctuations
and a second more localized electronic component, showing
stripelike spin fluctuations.21,22 Several reviews and books
have been published on the two-component scenario and
phase separation in cuprates.18–20,23–26 Here we focus not on
the well-studied phase separation in the underdoped regime,
near the Mott phase, between a hole-poor antiferromagnetic
�AF� phase and a metallic hole-rich phase, but on the phase
separation in the overdoped regime12–22 between a hole-poor
phase with doping close to 1/8 and a hole-rich phase with
doping close to 1/4.

This phase-separation scenario has been described in
Refs. 18, 21, and 22 for LaSrCuO and overoxygenated
La2CuO4. It is based on the experimental fact that variation
in the magnetic incommensurability due to spin stripes satu-
rates at doping 1/8 �see Fig. 15 of Ref. 21�. The residual
magnetic scattering at high doping suggests that one of the
phases has stripe correlations similar to the x=1 /8 phase
with the volume fraction of this phase decreasing with x, as
indicated in Fig. 17 of Ref. 21. The other phase is presum-
ably uniformly doped. The picture, then, is that as one in-
creases the doping beyond x=1 /8, it becomes unfavorable to
accommodate the additional holes in stripes; instead, patches
of the uniformly doped phase grow at the expense of the
stripe phase. The maximum Tc seems to occur in a mixed
phase region dominated by the stripe phase.

A similar scenario is now well accepted for understanding
the physics of phase separation in manganites.27–29 It was
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shown that even in the absence of any specific order param-
eter, the presence of two strongly correlated electron bands
leads to the possibility of a phase-separated state.30

In Ref. 30, the evolution of phase separation was studied
as a function of doping. However, a large amount of data
clearly indicates that the phase-separation regime is not only
a function of doping but also of the anisotropic chemical
pressure acting on the CuO2 layers due to interlayer
mismatch.31–34 The chemical pressure is a well-established
physical variable that controls the physical properties of per-
ovskites, and it is usually measured by the average ionic
radius of the cations in the intercalated layers or the tolerance
factor t; in fact, the internal chemical pressure in perovskites
can be defined as �=1− t. In all perovkites and particularly
in manganites, it is well established that the phase diagram of
the electronic phases depends on the two variables, charge
density and chemical pressure.35 Since the early years of
high-Tc superconductivity research the mismatch chemical
pressure has been considered as a key variable controlling
the electronic properties of cuprates only on one family,
La214;34 however, it was not possible to extend this idea to
other families for the presence of a plurality of intercalated
layers with cations having largely different coordination
numbers. Therefore, it was not possible to compare the av-
erage ionic size �rA� in the intercalated layers and to get the
tolerance factor t for all cuprate families. This problem was
solved by obtaining the internal chemical pressure from the
measure of the compressive microstrain �= �R0−r� /r in the
CuO2 plane �that has the same absolute value as the tensile
microstrain in the intercalated layers�, where r is the average
Cu-O distance and R0=0.197 nm is the unrelaxed Cu-O
distance.31–33 Therefore, the chemical pressure is propor-
tional to the microstrain, �=2�.

In the 3D phase diagram, the phase separation for the
overdoped regime in overoxygenated La214 occurs in a fam-
ily with high chemical pressure close to �=8%, while it
becomes a frustrated phase separation in the LaSrCuO,
Bi2212, and Y123 that are in the range of chemical pressure
7%���4%; while for cuprates with lower microstrain only
very fast critical fluctuations could be present.31–33 In this
paper, we propose a model of a two-component system made
of two different strongly correlated electron bands, where the
chemical pressure controls the energy splitting between the
two bands. The phase separation in the overdoped regime
can exist for specific values of the ratio between the band-
width of the two bands. The critical point for the transition
from a frustrated phase separation to a nonfrustrated phase
separation can be obtained by tuning the long-range 1 /r
Coulomb repulsion that frustrates the phase separation as
going from Sr-doped to oxygen-doped La124.

II. MODEL

The existence of the two types of strongly correlated
charge carriers in cuprates can be described in terms of the
two-band Hubbard model. The Hamiltonian of such a system
can be written as30

H = − �
�nm��,�

t�an��
† am�� − �E�

n�

nnb� − 	 �
n�,�

nn��

+
1

2 �
n�,�

U�nn��nn��̄ +
U�

2 �
n�,���

nn��nn�̄��. �1�

Here, an��
† and an�� are the creation and annihilation opera-

tors for electrons corresponding to bands �= �a ,b� at site n
with spin projection �, and nn��=an��

† an��. The symbol �. . .�
denotes the summation over the nearest-neighbor sites. The
first term in the right-hand side of Eq. �1� corresponds to the
kinetic energy of the conduction electrons in bands a and b
with the hopping integrals ta� tb. In our model, we ignore
the interband hopping. The second term describes the shift
�E of the center of band b with respect to the center of band
a ��E�0 if the center of band b is below the center of band
a�. The last two terms describe the on-site Coulomb repul-
sion of two electrons either in the same state �with the Cou-
lomb energy U�� or in the different states �U��. The bar
above � or � denotes not � or not �, respectively. The as-
sumption of the strong electron correlations means that the
Coulomb interaction is large, that is, U� ,U�
 t� ,�E. The
total number n of electrons per site is a sum of electrons in
the a and b states, n=na+nb, and 	 is the chemical potential.
Below, we consider the case n�1 relevant to cuprates.

Model �1� predicts a tendency to the phase separation in a
certain range of parameters, in particular, in the case when
the hopping integrals for a and b bands differ significantly
�ta� tb�.30 This tendency results from the effect of strong
correlations giving rise to dependence of the width of one
band on the filling of another band. In the absence of the
electron correlations �n�1�, the half width wa=zta of the a
band is larger than wb=ztb �z is the number of the nearest
neighbors of the copper ion�. Due to the electron correla-
tions, the relative width of a and b bands can vary
significantly.30

In the limit of strong correlations, U� ,U�→, we can
describe the evolution of the band structure with the change
in n and �E following the method presented in Ref. 30. We
introduce the one-particle Green’s function,

G���n − n0,t − t0� = − i�T̂an���t�an0��
† �t0�� , �2�

where T̂ is the time-ordering operator. The equations of mo-
tion for the one-particle Green’s function with the Hamil-
tonian �1� include the two-particle Green’s functions:

G��,����n − n0,t − t0� = − i�T̂an���t�nn����t�an0��
† �t0�� .

In the considered limit of strong on-site Coulomb repul-
sion, the presence of two electrons at the same site is unfa-
vorable, and the two-particle Green’s function is of the order
of 1 /U, where U�U� ,U�. The equation of motion for
G��,��� includes the three-particle terms coming from the
commutator of an���t� with the U terms of the Hamiltonian
�1�, which are of the order of 1 /U2 and so on. In these
equations, following the Hubbard I approach,36 we neglect
the terms of the order of 1 /U2 and make the following re-
placement:
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�T̂an+m���t�nn����t�an0��
† �t0��

→ �nn�����T̂an+m���t�an0��
† �t0�� .

As a result, we derive a closed system for the one- and two-
particle Green’s functions.30,36 This system can be solved in
a conventional manner by passing from the time-space �t ,r�
to the frequency-momentum �� ,k� representation. In the
case of superconducting cuprates the total number of elec-
trons per site does not exceed unity, n�1. The upper Hub-
bard sub-bands are empty, and we can proceed to the limit
U� ,U�→. In this case, the one-particle Green’s function
G�� is independent of U and can be written in the frequency-
momentum representation as29,30

G���k,�� =
g��

� + 	 + �E� − g��w���k�
, �3�

where �E�=0 for �=a and �E�=�E for �=b,

g�� = 1 − �
��

n�̄�� − n��̄, �4�

where n��= �nn��� is the average number of electrons per site
in the state �� ,�� and ��k� is the spectral function depending
on the lattice symmetry. Since the results do not vary cru-
cially with the change of the lattice symmetry,30 here we
consider the case of the simple cubic lattice when
��k�=−	cos�k1d�+cos�k2d�+cos�k3d�
 /3, where d is the lat-
tice constant. In the main approximation in 1 /U, the mag-
netic ordering does not appear and we can assume that n�↑
=n�↓�n� /2.

Equations �3� and �4� demonstrate that the filling of band
a depends on the filling of band b and vice versa. Indeed,
using the expression for the density of states
���E�=−�−1 Im�G��k ,E+ i0�d3k / �2��3, we get the follow-
ing expression for the numbers of electrons in bands a and b
��=a ,b�:

n� = 2g�n0	 + �E�

g�w�
� , �5�

where

n0�	�� = �
−1

	�
dE��0�E�� , �6�

and �0�E��=�d3k�	E�−��k�
 / �2��3 is the density of states
for free electrons �with the energy normalized by unity, �E�
�1�. The chemical potential 	 in Eq. �5� can be found from
the equality n=na+nb.

When the energy band b is far above the center of band a
��E�0�, there exist only a electrons. With the increase in
�E, the chemical potential reaches the bottom of the b band
−�E−wb. At higher �E, the b electrons appear in the system,
and the effective width of the a band, wa

eff=2waga, starts to
decrease. At large positive values of �E, the a carriers in the
system disappear and there exist only b electrons. The plots
of na, nb, and the effective bandwidth as functions of �E are
shown in Figs. 1 and 2, respectively.

The energy of the system in the homogeneous state, Ehom,
is the sum of electron energies in all filled bands. Similarly to
Eq. �5�, we can write Ehom in the form

Ehom = 2�
�

g�
2w��0	 + �E�

g�w�
� − �Enb, �7�

where

�0�	�� = �
−1

	�
dE�E��0�E�� . �8�

The dependence of Ehom�n� is shown in Fig. 3 at different
values of �E. We see that within a certain n range, the sys-

FIG. 1. �Color online� Evolution of the occupation numbers na

and nb of the bands a and b at fixed doping �=1−n=0.3 in the
absence of phase separation. The region of phase separation lies
between two vertical dotted lines. There we have two phases: Pa

including mostly a charge carriers and Pb with dominant b carriers.
The content of different types of carriers in Pa and Pb is given by
the intersections of na and nb curves with left and right dashed
vertical curves, respectively. The change in concentration p of
phase Pa in the phase-separation region is shown by the �green�
dot-dashed line.

FIG. 2. �Color online� Effective widths wa,b
eff of the a and b bands

versus band shift �E at fixed doping �=1−n=0.3. The �green�
dot-dashed curve illustrates the behavior of the chemical potential
	; the �green� hatched area under this curve corresponds to the
states occupied by charge carriers.
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tem can have a negative compressibility, �2Ehom /�n2�0,
which means a possibility for the charge carriers to form two
phases with different electron concentrations.30,31 The nega-
tive compressibility disappears when the centers of the bands
are far apart from each other �see, e.g., the curve correspond-
ing to �E /wa=0.4 in Fig. 3�.

The phase separation may be hindered by increase in the
total energy due to surface effects and a charge redistribu-
tion. However, at first we do not take into account these
effects. We consider two phases, Pa �low carrier density� and
Pb �high carrier density�, with the number of electrons per
site n1 and n2, respectively. A fraction p of the system vol-
ume is occupied by the phase Pa and 1− p is a fraction of the
phase Pb. We seek a minimum of the system energy

Eps
0 �n1,n2� = pEhom�n1� + �1 − p�Ehom�n2� �9�

under the condition of the charge carrier conservation n
= pn1+ �1− p�n2. The results of calculations of the system
energy in the phase-separated state are shown in Fig. 3 by the
dashed lines. We see that the phase separation exists in the
range of n where both types of charge carriers coexist in the
homogeneous state. The ratio of the numbers of a and b
carriers is different in different phases. In the first phase Pa,
almost all charge carriers are in band a, while in the second
phase Pb the situation is opposite.

The redistribution of charge carriers in the phase-
separated state gives rise to the additional electrostatic con-
tribution, EC, to the total energy. This term in the Wigner-
Seitz approximation was calculated in Ref. 30. At p�0.5 it
can be written as EC=V�n1−n2�2�Rs /d�2u�p�, where

u�p� = 2�p�2 − 3p1/3 + p�/5, �10�

V is the characteristic energy of the intersite Coulomb inter-
action and Rs is the radius of the spherical droplet of the
phase Pa surrounded by the shell of the phase Pb. In the case
p�0.5, we should replace n1↔n2 and p↔1− p. The second

contribution to the total energy, depending on the size of
inhomogeneities, is related to the surface between the two
phases. The corresponding energy per unit volume can be
presented in the form ES= pS��n1 ,n2� /V0, where p�0.5, S is
the surface, V0 is the volume of the inhomogeneity, and
��n1 ,n2� is the surface tension. For spherical droplets, we
have ES=3p��n1 ,n2�d /Rs. If p�0.5, we should replace p
→1− p. Minimization of the sum ECS=EC+ES with respect
to Rs allows us to calculate this value. In doing so, we get at
p�0.5

Rs = d 3p��n1,n2�
2V0�n2 − n1�2u�p��

1/3

. �11�

The total energy of the inhomogeneous state then reads

Eps = pEhom�n1� + �1 − p�Ehom�n2� + ECS�Rs� , �12�

where Rs is given by Eq. �11�. The surface energy comes
from the size quantization and it was estimated in Ref. 30.
The electrostatic and surface contributions to the energy re-
lated to an inhomogeneous charge distribution reduce the
range of n, in which the phase separation is favorable �see
the phase diagram in Fig. 4�.

III. RESULTS AND DISCUSSION

The undoped state of the cuprates corresponds to one
electron per site �n=1� in the model used in Ref. 30. The
number of itinerant holes � is related to n as �=1−n. In
general, the relationship between n and � could be more
complicated;37 however, for the present considerations such

FIG. 3. �Color online� The energy of the system vs doping level
n at different values of �E. Solid curves correspond to the homo-
geneous state, whereas the dashed curves are the energies of the
phase-separated state without taking into account electrostatic and
surface contributions to the total energy.

FIG. 4. �Color online� The phase diagram of model �1� in the
�doping, band shift� plane at the ratio of bandwidths wb /wa=0.3.
Below the lower �red� solid line, there are charge carriers only of a
type, whereas above the upper �blue� curve, only b carriers. Be-
tween these lines, there appears the region of phase separation
	marked by �green� hatching
. The charge disproportionalization in
the phase-separated state can substantially reduce this region: the
arrows indicate the phase-separation regions at V /wa=0.01 and
0.015, where V is the characteristic energy of intersite Coulomb
interaction.
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corrections are not of principal importance. The phase dia-
gram of model �1� in the �� ,�E� plane is drawn in Fig. 4. In
this figure, below the lower �red� solid line, we have the
charge carriers only of a type, whereas above the upper
�blue� curve, there are only b carriers. If we ignore the pos-
sibility of the phase separation, the relative number of a and
b charge carriers varies gradually between these two lines.
The evolution of the occupation numbers na and nb of the
two bands with �E at a fixed doping is illustrated in Fig. 1.
Note also that the effective widths of the a and b bands also
vary with the band shift due to the electron correlation ef-
fects. This is illustrated in Fig. 2. Taking into account pos-
sible phase-separated states results in a significant modifica-
tion of the phase diagram in the range of intermediate
doping. In the hatched �green� region in Fig. 4 the homoge-
neous state becomes unfavorable, and the system separates
into two phases �Pa and Pb� with different numbers of charge
carriers per site n1�na and n2�nb. The electrostatic contri-
bution to the energy related to an inhomogeneous charge
distribution reduces the doping range, in which the phase
separation is favorable.30 In Fig. 4, we illustrate that a rela-
tively small energy loss due to the charge disproportionaliza-
tion leads to a substantial decrease in the area of the phase-
separation region: compare the areas indicated by arrows
corresponding to V /wa=0.01 and 0.015 �V is the character-
istic energy of intersite Coulomb interaction38� and the whole
hatched area corresponding to V=0. Note that at low hole
doping �n close to one�, the AF correlations are dominant,
which requires a special analysis.

Estimating the contribution of the long-range Coulomb
interaction to the energy of the phase-separated state, we
assume the simplest dropletlike geometry of the inhomoge-
neities. The phase separation occurs in the range of param-
eters where the energy of the homogeneous state as a func-
tion of doping has a negative curvature corresponding to the
negative compressibility.29,30 It was widely discussed in the
literature that long-range Coulomb interaction in the systems
with negative compressibility can give rise to more compli-
cated geometry of the phase separation �stripes, layers, rods,
etc.� �see Refs. 39 and 40 and references therein�. Thus, a
due account of the long-range Coulomb interaction could
reproduce different superstructures �stripes, in particular� ob-
served in the cuprate superconductors near the optimum dop-
ing. However, the proper analysis of the inhomogeneity ge-
ometry requires a further study based on a more complicated
model.

Now let us discuss the relation of the above model to the
experimental situation in the copper-based perovskites,
where two types of charge carriers and the inhomogeneous
�phase-separated� state are observed. The inhomogeneous
state in cuprates corresponds to the coexistence of two
phases. One of them is characterized by a superstructure
�charge ordering, stripes, etc.� and another one has no super-
structure. The state with charge �or spin� superstructure cor-
responds to a higher degree of localization and, therefore, to
a smaller value of the hopping integral. Naturally, a charge
carrier may hop either retaining short-range order and gain-
ing in the potential energy or hop in an arbitrary way with
larger hopping integral, thus gaining in the kinetic energy.
The former corresponds to our b state and the latter to the a

state. In our analysis, we did not consider any ordering,
which arises in the next-order approximations. In particular,
magnetic order requires taking into account the terms of the
order of ta,b

2 /U, and the charge ordering implies allowing for
the Coulomb interaction of carriers at different sites �nearest-
neighbor at least�.

The relative position of the two bands, �E, and hopping
integrals, ta,b, depends, in particular, on the chemical pres-
sure proportional to a microstrain � in the crystal lattice. To
describe the experimental phase diagram of cuprates in the
�� ,�� plane,1,31–33 we should know the relationship between
the model parameters and the chemical pressure. It is natural
to assume that the two bands in the cuprate crystal originate
from the double degenerate eg hole level of Cu2+ �configu-
ration d9� in the crystal field of cubic symmetry. The splitting
of this level occurs due to lattice distortions related to the
Jahn-Teller effect, lowering the cubic symmetry. The chemi-
cal pressure distorts the crystal lattice even more and should
affect the value of �E significantly. It is natural to assume
that �E and � are linearly related to each other, if ����1. So,
we can write

�E��� = �E�0� + �E1f��� , �13�

where f��� is a dimensionless function and f����� at ���
�1. Cu2+ is a typical Jahn-Teller ion, and we can assume
that �E1 is of the order of the characteristic Jahn-Teller en-
ergy, which is larger than ta �see, e.g., Refs. 30, 38, and 41
and references therein�. The effect of the microstrain on the
relative band positions can be significant since the value �E
arises due to splitting of the originally degenerate levels. At
the same time, small strains give rise only to small correc-
tions to the bandwidth. So, the ratio tb / ta is considered fur-
ther on as independent of �. Note also that the values of the
intersite Coulomb interaction V characteristic of perovskites
is of the order of 0.1−0.01ta �see, e.g., Ref. 38 and refer-
ences therein�. Thus, the value V=0.015zta used below is
quite reasonable.

Bearing this in mind, we compare the theoretical phase
diagram in Fig. 4 with the experimental 3D phase diagram of
cuprates1,31 in Fig. 5. The left-hand y scale is the mismatch
chemical pressure � related to microstrain as �=2� and the x
axis is the doping �the number of holes per Cu site�. The
color plot represents the values of critical temperature in dif-
ferent superconducting cuprate families. The plot shows the
fit of the experimental data of a large number of materials
with the convolution of a parabolic curve with the maximum
at Tmax for Tc as a function of doping, and an asymmetric
Lorentzian for Tmax as a function of the mismatch chemical
pressure with the maximum of 135 K at 2�=4%. The y axis
in the right-hand side of the figure gives the energy distance
�E between the center of band a and band b normalized to
the width of band wa of the more itinerant carriers. The phase
diagram involving the superconducting critical temperature,
chemical pressure, and doping reaches the Tc maximum at
2�=4% and 0.16 holes per Cu sites. Based on the aforemen-
tioned consideration, we can take �E�0�=−0.133wa and
�E�0�=6.67wa in Eq. �13�. We can identify a low-doping
insulating phase, for any chemical pressure, at doping
smaller than 0.06, where the vertical dashed line indicates
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the line of the metal-insulator transition. The experimental
investigations of the 3D phase diagram of cuprates indicate
that the homogeneous metallic phase, with more delocalized
states, occurs for both high doping and low chemical pres-
sure, i.e., in the low right corner of the figure. In this region,
we have in the theoretical model the charge carriers only in
the band a. On the contrary, the homogeneous phase made of
localized states, where the striped phase appears, occurs at
the corner on the top-left side of the figure. In the theoretical
model, we have in such a region the charge carriers only in
the band b. The superconducting phase occurs in the inter-
mediate region between these two limiting cases. The phase-
separation region predicted by our model �inside the area
bounded by the solid white line� corresponds to the super-
conducting phase. It is in qualitative agreement with the
STM, extended x-ray absorption fine structure �EXAFS�, and
neutron pair distribution function �PDF� experiments, show-
ing that high-Tc superconductivity occurs in a regime of me-
soscopic phase separation. The present results show that the
maximum critical temperature occurs where the energy split-
ting between the more itinerant band a and the more local-
ized band b is close to zero.

The theoretical phase diagram reproduces qualitatively
the experimental results on the phase separation in cuprates
�La214, Bi2212, and Y123 systems� near optimum doping
obtained by neutron scattering and anomalous diffraction
techniques.31–33 The phase separation arises in the intermedi-
ate doping range and disappears at low and high doping lev-
els. The phase with “more itinerant” electrons exists at small
microstrains, the “more localized” �and more ordered� phase
arises at higher microstrains, and the phase-separated state is
located in the intermediate range of �. However, our calcu-

lations predict the phase separation in a broader doping range
than in the experiments. It seems to be a consequence of
simplifications used in the formulation and approximate
analysis of the two-band Hubbard model 	Eq. �1�
. To im-
prove the agreement with the experiment it is necessary to
take into account specific features of the lattice and electron
structure of the cuprate superconductors. In particular, we
disregard the interband electron transitions, that is, we ne-
glect the terms tabana�

† amb� in the Hamiltonian �1� assuming
that tab=0. The doping range where the phase separation can
exist reduces with the increase in tab.41

As it follows from Fig. 5, the superconducting transition
temperature Tc is the highest for the parameter range where
the system is in the phase-separated state. This is an indica-
tion that the mechanism of the phase separation is intimately
related to the phenomenon of superconductivity. It is worth
to note that in the case when interband coupling tab is in the
range ta� tab� tb, the electron density of states has a peak
near the Fermi level in the parameter range corresponding to
the phase-separated state, where Tc is maximum.41 We can-
not claim whether this fact is accidental or not.

IV. CONCLUSIONS

Up to now, most of the attention both of experimentalists
and theorists has been addressed to the phase separation in
the underdoped regime between a first undoped antiferro-
magnetic phase and a second doped metallic phase of cu-
prates. Now, we have evidence for mesoscopic phase sepa-
ration in the overdoped region of cuprate superconductors
where a striped phase at doping 1/8 coexist with a metallic
phase with doping close to 1/4. In our paper, we were dealing
just with this situation.

We have presented an emerging theoretical scenario that
relates the phase separation to the chemical pressure. This
scenario grabs key physical aspects of the 3D phase diagram
of cuprates. It was shown that the two-band model is appro-
priate for the normal phase of all cuprate superconducting
families, where the energy splitting between the two bands is
controlled by mismatch chemical pressure. In the regime
where the two bands are close in energy, the system is un-
stable toward the phase separation. The highest critical tem-
perature of the superconducting transition in cuprates is at-
tained within the phase-separated state.
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FIG. 5. �Color online� The values of superconducting transition
temperature Tc, from 0 at the edge to 135 K in the center, is shown
in a color plot as function of chemical pressure �2�� and doping
�number of holes per Cu site�. The white curve corresponds to the
phase-separation region given by the two-band Hubbard model 	Eq.
�1�
 corresponding to wb /wa=0.3 and V /wa=0.01 �see Fig. 4�.
Phases Pa and Pb include mostly the carriers of a and b types,
respectively. The black solid line is the boundary of the phase-
separated state deduced from neutron scattering and anomalous dif-
fraction experiments for cuprates �La214, Bi2212, and Y123
systems�.
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