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Abstract
The arrested nanoscale phase separation in a two-band Hubbard model for strongly correlated
charge carriers is shown to occur in a particular range in the vicinity of the topological Lifshitz
transition, where the Fermi energy crosses the bottom of the narrow band and a new sheet of the
Fermi surface related to the charge carriers of the second band comes into play. We determine
the phase separation diagram of this two-band Hubbard model as a function of two variables, the
charge carrier density and the energy shift between the chemical potential and the bottom of the
second band. In this phase diagram, we first determine a line of quantum critical points for the
Lifshitz transition and find criteria for the electronic phase separation resulting in an
inhomogeneous charge distribution. Finally, we identify the critical point in the presence of a
variable long-range Coulomb interaction where the scale invariance of the coexisting phases
with different charge densities appears. We argue that this point is relevant for the regime of
scale invariance of the nanoscale phase separation in cuprates like it was first observed in
La2CuO4.1.

Keywords: two bands superconductor, Lifshitz transition, nanoscale phase separation, shape
resonance, complexity, multi-band Hubbard model

(Some figures may appear in colour only in the online journal)

1. Introduction

The mechanism driving the emergence of a quantum mac-
roscopic order that is able to resist to the decoherence effect
of high temperatures remains a major topic of research in

condensed matter. The realization of this macroscopic quan-
tum phase in doped cuprates close to the Mott insulator
regime has stimulated a large number of investigations on the
physics of strongly correlated metals. Most theoretical papers
treated models of a homogeneous system made of a single
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electronic band (or models of multiple hybridized bands
reduced to a single effective band), with a large Hubbard
repulsion. There is a growing agreement that the solution of
the problem of high-Tc superconductivity requires the correct
description of the normal state where spin, charge, orbital, and
lattice degrees of freedoms compete, with the formation of
nanoscale puddles of spin density wave stripes, puddles of
charge density wave stripes, and/or puddles of ordered mobile
oxygen interstitials.

A lot of researchers feel very strongly that the minimum
model to capture the essential physics of high-temperature
superconductors needs to take into account both the presence
of ‘two electronic components with different orbital sym-
metry’ [1–9], and a ‘nanoscale phase separation’ [10–18]
involving also the spatial segregation of the charge density,
the orbital symmetry, and the lattice local symmetry [19–34].
Therefore, a multiband model is needed to describe the
functional superconducting phase emerging in a complex
system with multiple electronic components [35–40]. The
effects of strong correlations in multiband systems were
actively treated using the Hubbard model [41–48]. A parti-
cular interesting feature of the multiband Hubbard model is
that it predicts the emergence of phase separation [48–51].

In 1994 a topological Lifshitz transition [52–54] was first
proposed to appear around 1/8 doping in cuprates [55–57] and
a theory for high-Tc superconductivity based on the shape
resonances between a Bardeen–Cooper–Schrieffer (BCS)-like
superconducting gap and a second gap in the Bose–Einstein
condensate (BEC)–BCS crossover regime in the new
appearing band was formulated [58–62]. There is now com-
pelling experimental evidence that the high temperature
superconductivity emerges in the proximity to a topological
Lifshitz transition [63–70].

Here we provide a theoretical model for the phase dia-
gram region where the nanoscale phase separation emer-
gences in a two-band scenario of two strongly correlated
electronic fluids in the proximity of a topological Lifshitz
transition (so called 2.5 order transition). This simple model
captures the key physics of the anomalous normal phase in
cuprates exhibiting the phase separation as a function of
charge density and the energy splitting between the two
bands. This provides an additional insight into specific fea-
tures of superconducting phases in different cuprate families,
i.e., the new 3D phase diagram where the critical temperature
depends on the doping and misfit strain between the active
atomic layers and the spacer layers [25, 71–73]. There exists
evidence of two types of phase separation in cuprates (a) the
phase separation in the underdoped regime, near the Mott
phase, between a hole-poor antiferromagnetic phase and a
metallic hole-rich phase and (b) the phase separation between
two metallic phases, namely, between a hole-poor phase with
doping close to 1/8 and a hole-rich phase with doping close to
1/4. The cuprates at optimum doping present the second type
of phase separation as we have proposed before [74, 75].
Recently it has been found that some cuprate systems like
La2CuO4.1 show scale invariance of the distribution of oxy-
gen interstitials that suggests a scale invariant phase separa-
tion typical of a system near the critical point. Therefore, it is

possible that the criticality in La2CuO +y4 results from a
quantum critical point [28]. We discuss the phase diagram of
a two-band system as a function of two variables: the charge
density and the energy shift between the two bands. In this
phase diagram, we first determine a line of quantum critical
points for a Lifshitz transition of the type ‘appearing of a spot’
of a new sheet of the Fermi surface when one more band
comes into play. Second, we identify the electronic phase
separation for two strongly correlated bands in the proximity
of the line of Lifshitz transition. Finally, we identify the cri-
tical point, where the phase invariance in the coexistence of
the two phases appears. This last point is proposed to be a
possible explanation for the regime of scale invariance in
nanoscale phase separation in high-Tc superconductors [32].

2. The model

The existence of the two types of the strongly correlated
charge carriers in cuprates can be described in terms of the
two-band Hubbard model. The Hamiltonian of such a system
can be written as [51]
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Here, ασan
† and ασan are the creation and annihilation operators

for electrons corresponding to bands α = a b{ , } at site n
with spin projection σ, and =ασ ασ ασn a an n n

† . The symbol 〈 〉...
denotes the summation over the nearest-neighbor sites. The
first term in the right-hand side of equation (1) corresponds to
the kinetic energy of the conduction electrons in bands a and
b with the hopping integrals >t ta b. In our model, we ignore
the interband hopping. The second term describes the shift
ΔE of the center of band b with respect to the center of band a
(Δ >E 0 if the center of band b is below the center of band a).
The last two terms describe the on-site Coulomb repulsion of
two electrons either in the same state (with the Coulomb
energy αU ) or in the different states ( ′U ). The bar above α or σ
denotes not α or not σ, respectively. The assumption of the
strong electron correlations means that the Coulomb interac-
tion is large, that is, Δ′ ≫α

αU U t E, , . The total number n of
electrons per site is a sum of electrons in the a and b states,

= +n n na b, and EF is the Fermi energy potential. Below, we
consider the case ⩽n 1 relevant to cuprates. The model
equation (1) predicts a tendency to the phase separation in a
certain range of parameters, in particular, in the case when the
hopping integrals for a and b bands differ significantly
( >t ta b) [51, 76]. This tendency results from the effect of
strong correlations giving rise to dependence of the width of
one band on the filling of another band. In the absence of the
electron correlations ( ≪n 1), the half-width wa = zta of a
band is larger than wb = ztb (z is the number of the nearest
neighbors of the copper ion). Due to the electron correlations,
the relative width of a and b bands can vary significantly [51].
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The schematic band structure and all notation are presented in
figure 1.

Following [51, 74] we considered the limit of strong
correlations and introduce the one-particle Greenʼs function,

− − = −ασ ασ ασG t t i Ta t a tn n( , ) ˆ ( ) ( ) , (2)n n0 0
†

00

where T̂ is the time-ordering operator. The equations of
motion for the one-particle Greenʼs function with the
Hamiltonian equation (1) include the two-particle Greenʼs
functions. However, in the limit of strong on-site Coulomb
repulsion, the presence of two electrons at the same site is
unfavorable, and the two-particle Greenʼs function is of the
order of U1 , where ∼ ′αU U U, . In turn, the equation of
motion for the two-particle Greenʼs functions includes the
three-particle terms, which are of the order of U1 2 and so on.
We use for the two-particle Greenʼs functions the Hubbard I
approximation and neglect the terms of the order of U1 2. In
so doing, we get a closed system for the one- and two-particle
Greenʼs functions [51, 74]. This system is solved in a stan-
dard manner by passing from the space–time tr( , ) to the
momentum–frequency ωk( , ) representation. In the case of
superconductors the number of electrons per site ⩽n 1. The
upper Hubbard sub-bands are empty, and we can proceed to
the limit ′ → ∞αU U, . In this case, the one-particle Greenʼs
function is independent of U and can be written in the form
[51, 74]
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where Δ =E 0a , Δ Δ=E Eb ,

∑= − −ασ
σ

ασ ασ
′

′g n n1 , (4)¯ ¯

= 〈 〉ασ ασn nn is the average number of electrons per site in
the state α σ( , ), and ζ k( ) is the spectral function depending

on the lattice symmetry. In the main approximation in U1 ,
the magnetic ordering does not appear and we can assume
that = =α α α↑ ↓n n n 2 and = ≡α α α↑ ↓g g g . For simplicity
and for more direct comparison with the results of [51],
we use here the dispersion law corresponding to the tight-
binding band in the simple cubic lattice, ζ =k( )

⎡⎣ ⎤⎦− +k d k d k dcos ( ) cos ( ) cos ( ) 31 2 3 , where d is the lattice
parameter. We checked that the qualitative results do not
significantly affected by the specific choice of the disper-
sion law. However, for a more detailed comparison of the
model predictions with the actual experimental data, it is
necessary to use realistic electronic characteristics. This
work is now in progress.

It follows from equations (3) and (4) that the filling
of band a depends on the filling of band b and vice versa.
Really, using the expression for the density of states

∫ρ π π= − +α α
−E G E ik k( ) Im ( , 0)d (2 )1 3 3, we get the

expression for the numbers of electrons in bands a and b
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where [51, 74]

∫μ ρ′ = ′ ′
μ

−

′
n E E( ) d ( ), (6)0

1
0

and ∫ρ δ ζ π′ = ′ −E E k k( ) [ ( )]d (2 )0
3 3 is the density of

states for free electrons. The Fermi level, EF, in equation (5) is
found from the equality = +n n E n E( ) ( )a F b F .

In iron-based superconductors, as it was shown in
[60, 61, 77], the region of high Tc appears in the neighbor-
hood of the Lifshitz transition where the local Fermi surface
spot disappears. The Lifshitz transition is a common feature
of many types of superconductors and in its neighborhood the
standard BCS approach is hardly applicable. The situation
here bears a similarity with the BEC–BCS crossover widely
studied in the physics of ultracold atomic systems. In the
specific case of strongly correlated electron systems including
two bands (two types of charge carriers), the shift of the
chemical potential due to the relative shift of the bands and/or
the variation of charge density implies the relevant renor-
malization of the effective width of both bands. This strongly
nonlinear renormalization leads to the electronic phase
separation. Since in the high-Tc superconductors an increase
of the critical temperature occurs at a substantiable distance
from the Lifshitz transition, it is tempting to associate the
region of the phase separation with that corresponding to high
values of the critical temperature. The experimental evidence
suggests that the phase separation goes together with the high-
Tc superconductivity. In this paper, we calculate the region of
the phase separation as a function of the Lifshitz parameter.

3. Results

Poles of the Greenʼs function equation (3) give two energy
bands of our model. The Lifshitz parameter = −h E E w( )F a2

Figure 1. Schematics of the band structure of Hamiltonian (1). There
is a wide (a) and a narrow (b) correlated (lower Hubbard) bands
shown by the solid cosine-like curves. The half-widths of these
bands are =α α αw g w¯ (α = a b, ), where =α αw zt are half-widths of
the bare (non-correlated) bands shown by the dotted cosine curves,
and αg are given by equation (4). The center of the wide band is
chosen as zero energy. The center of the narrow band is shifted by
the value Δ− E . The Lifshitz parameter h is defined as the position of
the Fermi level EF relative to the bottom of the narrow band E2 (in
units of wa).
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determines how far is the position of the Fermi level EF from
the bottom E2 of the narrow band b (see figure 1). For >h 0
the charge carriers of the b type exist in the system. At fixed
doping level δ = − = − −n n n1 1 a b, the occupation num-
bers, na and nb depend on the value of h. The dependence of
the filling of bands a and b on the Lifshitz parameter is non-
trivial for strongly correlated bands because the widths of these
bands, in turn, depend on the fillings na and nb. We calculate
the dependence of na and nb on the Lifshitz parameter h
according to the approach developed in [50, 51]. The obtained
curves for three different doping levels δ are shown in figure 2.
These dependences are qualitatively similar. Electrons appear
in band b if >h 0. Simultaneously, the number of electrons in
the a band starts to decrease and it goes to zero at some critical
value of the Lifshitz parameter.

We postulated that the ground state of the system is
homogeneous when obtaining the above results. The analysis
performed in [50, 51] shows, however, that this is not so in
the general case. Indeed, the energy of the system in the
homogeneous state, Ehom, is the sum of electron energies in
all filled bands. We can write Ehom in the form [74]

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫

∑ ε
Δ

ε μ ρ

=
+

′ = ′ ′ ′
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α α

α

α α

μ

−

′

E g w
E E

g w

E E E

2 ,

( ) d ( ). (7)

F
hom

2
0

0
1

0

The analysis of these equations reveals that within a certain n
range the system compressibility is negative, ∂ ∂ <E n 02

hom
2 ,

[74] which means a possibility for the charge carriers to form
two phases with different electron concentrations.

The electronic phase separation occurs in a wide range of
model parameters and doping levels. At fixed doping, the
phase-separated state is the ground state of the system if the
Lifshitz parameter lies within definite limits < <h h h1 2 (see
vertical lines in figures 2(a)–(c). The separated phases are Pa

with total (a and b) electron concentration n1, and Pb having a
different electron concentration n2. For the phase a (b) the
electrons of a (b) type are dominant, that is, ≫n na b

( ≫n nb a). The volume fraction p of the phase Pa, as well as
concentrations n1 and n2, can be found by the minimization of
the systemʼs energy, = + −E pE n p E n( ) (1 ) ( )ps hom 1 hom 2

with the condition δ− = + −pn p n1 (1 )1 2. The value of p
decreases from p = 1 down to zero for h changing from h1 to
h2 as shown in figure 2.

The Lifshitz parameter depends both on the doping δ (via
the position of the Fermi level) and the energy shift between
the centers of two bands ΔE . At fixed doping level, there is
one-to-one correspondence between ΔE and h. Typical curves

Δ( )h E wa are shown in figure 3 for different δ. The phase
separation exists in the region restricted by two black dotted
curves. In [51], the phase diagram of the two-band Hubbard
model (1) in the plane (n, ΔE) has been obtained in the limit
of large U. Using these results and the relation between h and
ΔE for different doping levels, we can rebuild this phase
diagram in the plane (h, δ). The result is shown in figure 4.
The phase separation exists within the region restricted by the
(red) solid contour.

Figure 2. Evolution of the occupation numbers na and nb of the
bands a and b at different doping levels δ = − n1 in the absence of
phase separation. The region of phase separation lies between two
vertical dotted lines. There we have two phases: Pa, including mostly
a charge carriers and Pb with dominant b carriers. The content of
different types of carriers in Pa and Pb is given by the intersections of
na and nb curves with left and right dashed vertical curves,
respectively. The change in the volume fraction p of phase Pa in the
phase separation region is shown by the (green) dotted–dashed line.
An irregular shape of the p (h) (green) curve in panel (a) is due to
small difference between the energies of the homogeneous and the
phase separated state at low doping.
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The phase separation discussed above gives rise to the
breaking of the local charge neutrality since the charge carrier
concentration is different in different phases. Thus, we should
take into account an additional electrostatic contribution in
the free energy, EC, which is governed by the long-range
Coulomb interaction (this contribution has been neglected in
the above discussion). This term in the Wigner–Seitz
approximation was calculated in [51, 74, 78]. If <p 0.5, it
can be written as = −E V n n R d u p( ) ( ) ( )C 1 2

2 2 , where
π= − +u p p p p( ) 2 (2 2 ) 51 3 , ε=V e d2 is the characteristic

energy of the intersite Coulomb interaction, e is the elemen-
tary charge, ε is the long-range permittivity, and R is the
radius of the spherical droplet of the phase Pa surrounded by
the shell of the phase Pb. In the case >p 0.5, we should
replace ↔n n1 2 and ↔ −p p1 .

The value of EC decreases with decreasing a spatial scale
of the inhomogeneous state. However, the smaller is the

characteristic size of inhomogeneity, the higher is the energy
of the phase interface ES. We assumed above that the phase
with lower volume fraction p forms spheres of the radius R
located in the matrix of another phase. In this case, the energy
of the phase interface ES can be written as σ=E p d R3S ,
where σ is the interface tension, which we calculate using the
Balian–Bloch perturbative approach [79]. Such calculations
are described in detail in [51]. Minimizing = +E E ECS C S

with respect to R, we obtain the characteristic scale of the
phase-separated state and get more realistic estimate for the
free energy of the inhomogeneous system [49, 78]. The
optimized value of ECS is given by the following relation [51]:

⎡⎣ ⎤⎦σ= −E p n n u p V
3

2
18 ( ) ( ) . (8)CS

2 2
1 2

2 1 3

As follows from this formula, the new contribution to the total
free energy depends on the long-range Coulomb repulsion
parameter as ∝E VCS

1 3. The region of parameters, where the
phase separation is favorable, shrinks with the increase of
ECS, that is, with the growth of the long-range Coulomb
repulsion V and disappears if this value is above some
threshold.

In other words, the long-range Coulomb interaction
induces a shrinkage of the phase separation region together
with the scale of the phase separation. Hence we can say that
here we deal with the frustrated (or arrested) phase separation.
Note that the term ‘frustrated phase separation’ was first
introduced by Emery and Kivelson [80] for strongly corre-
lated electron systems and is rather widely used in this field
(see, e.g. [49, 81, 82]), whereas the synonym of this term,
namely, ‘arrested phase separation’ has been used long before
but mainly in relation to colloidal solutions and gels (see, e.g.
[83–85]) and now it is used in a more general context
[86, 87]. We believe that the word ‘arrested’ is more adequate
here and prefer to use it.

The phase separation region is shown in figure 5 in the
plane δ ΔE w( , )a for different values of =v V wa. The long-
range Coulomb repulsion affects significantly the phase
separation region (if > −v 10 3 for the chosen range of para-
meters). The area of the inhomogeneous state rapidly shrinks
(if >v 0.005 in figure 5) and totally disappears if >v vc

( ≈v 0.03c in figure 5). The valuesV w in figure 5 are realistic
for high-Tc cuprates [75].

The phase separation in the two-band model is possible
only in the vicinity of the Lifshitz transition, that is, in definite
range of parameter h. In figure 5 the lines of constant h are
shown by dotted lines. The phase separation is evidently
possible only if >h 0. In figure 6, the region of the phase
separation is shown in three-dimensional phase diagram in the
space (h, δ, v). This figure summarizes the results of our
calculations. The inhomogeneous state exists in a definite
region of doping and Lifshitz parameter. This region
decreases with the increase of the long-range Coulomb
repulsion parameter =v V wa and shrinks to zero if >v vc.
We can say that the shrinkage of the phase-separation region
allow the charge carrier densities in the phase-separated state
to be closer to the line of Lifshitz transition.

Figure 3. Distance h between the Fermi level and the bottom of the
upper narrow band (Lifshitz parameter) versus the shift ΔE between
two bands at different doping δ = − n1 .

Figure 4. The phase separation region for the ratio of the band widths
=w w 0.3b a .
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4. Discussion

Now the point is where high Tc occurs in a two-band sce-
nario. The detailed discussion of this issue is given in [60]
and [61]. Let us move the bottom E2 of the second band
relative to the Fermi level and we shall deal with the fol-
lowing two regimes.

(1) The system is boson–fermion regime with a low Tc,
where a first ‘BCS condensate’ resonates with a ‘BEC
condensate’, for the negative Lifshitz parameter,
− < <w w h 0a0 , where = −h E E w( )F a2 , w0 is the
cutoff energy for the pairing interaction, and wa is the
width of the first band.

(2) At the ‘shape resonance’ in an optimum regime, where
a first ‘BCS condensate’ in an electron-rich band
resonates with a second ‘condensate at the BEC–BCS
crossover’ occurring for a positive values of h, the

critical temperature starts increasing and attains max-
imum at h of the order of w wa0 .

Now the problem is that in this range of the tuning of the
chemical potential, the phase separation also occurs. More-
over, in oxygen doped system we have identified, where the
critical point for phase separation appears and it is quite near
to the =w w ha0 range. Therefore the distance in energy (h in
our notation) of the critical point from the band edge could be
a measure of the unknown energy cutoff for the pairing
interaction in cuprates. These ideas are illustrated by the
figures presented in the previous section. The undoped state
of the cuprates corresponds to one electron per site (n = 1) in
the model used in [51]. The number of itinerant holes δ is
related to n as δ = − n1 . In general, the relationship between
n and δ could be more complicated [7], however, for the
present considerations such corrections are not of principal
importance.

In conclusion, we can say that our simplified model
provides a good illustration for general ideas that high-Tc
superconductivity is an inherent feature of functional ‘het-
erostructures at atomic limit’ made of atomic units, where
four essential ingredients are well tuned. (1) Two or more
electronic components give multiple Fermi surface spots with
different symmetry so that (a) single electron interband hop-
ping is forbidden while (b) interband exchange-like pair
transfer is allowed. (2) The Fermi energy of one of the
components is close to the band edge so the system is close to
the 2.5 order Lifshitz (metal-to-metal) transition. (3) The
lattice and electronic structure show the complex granular
‘superstripes’ matter: a nanoscale phase separation made of
superconducting puddles coexisting with normal stripes with
charge order and/or magnetic puddles with spin order, which
does not suppress but enhances the stability of the macro-
scopic quantum order. (4) Intragrain high-Tc super-
conductivity is controlled by the ‘shape resonances’ between
a first BCS condensate and a second condensate in the BEC–
BCS crossover. Therefore, further essential details are needed
to investigate in the scenario of multi-condensates super-
conductivity in the regime of percolation superconductivity
corresponding to establishing the long-range coherence in
scale-free networks [13, 14].

In this work, we have shown that the synthesis of a two-
band strongly correlated ‘multi-condensate superconductor’,
where a first BCS condensate in a large Fermi surface coexists
with a second condensate at the BEC–BCS crossover in a new
appearing small Fermi surface (like in cuprates and iron-based
superconductors) [56–63] should also exhibit an intrinsic
arrested nanoscale phase separation. In fact, this type of
complex superconductivity appears in a two-band metal at a
critical distance from the topological Lifshitz transition.
Moreover, the control of long-range Coulomb interaction
[74, 75], determined by the screening in the different mate-
rials surrounding metal units, is a needed key parameter to
bring the system to a self-similar phase [32–34], which will
also promote [13, 14] the high-Tc superconductivity.

Figure 5. The phase separation region in the phase diagram of model
equation (1) at the ratio of band widths =w w 0.3b a . The charge
neutrality breaking in the phase separated state substantially reduces
this region. It shrinks with the growth of =v V wa, that is, with the
growth of the long-range Coulomb interaction.
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Figure 6. The three-dimensional phase diagram of model (1)
generalizing the data presented in the previous figures.
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